
LPATH: A Semiautomated Python Tool for Clustering Molecular
Pathways
Anthony T. Bogetti, Jeremy M. G. Leung, and Lillian T. Chong*

Cite This: https://doi.org/10.1021/acs.jcim.3c01318 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The pathways by which a molecular process
transitions to a target state are highly sought-after as direct views
of a transition mechanism. While great strides have been made in
the physics-based simulation of such pathways, the analysis of these
pathways can be a major challenge due to their diversity and
variable lengths. Here, we present the LPATH Python tool, which
implements a semiautomated method for linguistics-assisted
clustering of pathways into distinct classes (or routes). This
method involves three steps: 1) discretizing the configurational
space into key states, 2) extracting a text-string sequence of key visited states for each pathway, and 3) pairwise matching of pathways
based on a text-string similarity score. To circumvent the prohibitive memory requirements of the first step, we have implemented a
general two-stage method for clustering conformational states that exploits machine learning. LPATH is primarily designed for use
with the WESTPA software for weighted ensemble simulations; however, the tool can also be applied to conventional simulations.
As demonstrated for the C7eq to C7ax conformational transition of the alanine dipeptide, LPATH provides physically reasonable
classes of pathways and corresponding probabilities.

■ INTRODUCTION
Pathways traversed by a molecular process, including all stable
and transient states, are the most direct views of the
mechanism by which the process occurs. Recent advances in
both methods and hardware for physics-based molecular
simulations have enabled the generation of these direct views
for ever more complex processes that are beyond the reach of
typical computing resources. Path sampling strategies −
designed to focus sampling on transition pathways1 − have
captured pathways (and rates) for processes such as chemical
reactions,2,3 crystal nucleation,4 binding processes of pro-
teins5,6 and DNA7 and large-scale conformational switching in
proteins,8,9 with orders of magnitude greater efficiency than
conventional molecular dynamics (cMD) simulations. Fur-
thermore, state-of-the-art supercomputers and dynamics
engines have enabled simulations to target million-atom
systems.10−12

As we begin this golden age of molecular simulation, a next
frontier is to gain a detailed understanding of how key
processes are impacted by the multiple pathway routes that
may exist. Identifying pathway routes, however, can be a
challenge due to two factors. First, the clustering of molecular
pathways into distinct routes can be nontrivial due to the large
diversity and variable lengths of the pathways. Second, pathway
analysis can be computationally intensive for complex
processes due to the massive amount of simulation data
generated (e.g., tens of TB5,9).

Current methods for pathway analysis involve two main
steps: (1) projecting pathways onto a low-dimensional
configuration space and (2) clustering pathways based on a
similarity score. For example, the pathway similarity analysis
(PSA) method13 is a “bottom-up” approach that projects
pathways onto a low-dimensional configuration space consist-
ing of the pairwise root-mean-squared deviation of sampled
conformations and then clusters the pathways based on
pairwise Hausdorff14 or Frećhet15 geometric distances.
Another example is the pathway histogram analysis of
trajectories (PHAT) method,16 which presents two approaches
to classifying trajectories: (i) a “bottom-up” approach in which
“set similarities” are used to generate similarity scores between
pathways (e.g., using the geometric distances used in PSA)
followed by Voronoi clustering of the pathways and (ii) a “top-
down” approach where fundamental sequences are calculated
from a Markov state model (MSM). Most recently, MSMs
have been used to train deep-learning models for latent-space
path clustering (LPC).17
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Here, we present the Linguistics Pathway Analysis of
Trajectories with Hierarchical clustering (LPATH) tool,
which clusters pathways using a bottom-up approach and a
similarity score inspired by the Gestalt pattern matching
algorithm for plagiarism detection.18 We adapt this score for
the context of molecular pathways of variable lengths. Our
projection of pathways onto one-dimensional text strings
greatly accelerates the clustering of pathways and subsequent
analysis of path ensembles relative to manual analysis of
individual pathways. While the LPATH tool is designed for
weighted ensemble (WE) path sampling,19,20 using the
WESTPA software package,21 this tool can also be applied to
cMD simulations. Our benchmark application of LPATH
involves the C7eq to C7ax conformational transition of the
alanine dipeptide. While alanine dipeptide is a relatively simple
system that can be extensively sampled, it is sufficient in
complexity for the purposes of this application note, which is
to demonstrate the features of our software (i.e., the LPATH
tool) for a benchmark system in which the validity of the
resulting pathway classes can be clearly evaluated.

■ THE LPATH WORKFLOW
The LPATH workflow involves three steps (Figure 1): 1)
discretization, 2) extraction, and 3) matching. An additional
plotting module lpath.plot is available for visualizing
LPATH results (i.e., pathway class histograms, event duration
distributions, directed network plots) but not discussed here.
Step 1: Discretize the Configuration Space. In this

step, source and target states are defined, and the regions of
configuration space between these states are subdivided into
discrete states. For a WE simulation, the lpath.discre-
tize module uses WESTPA's w_assign tool to assign
trajectory segments to the source and target states according to
a scheme defined by the user in the west.cfg file. State
discretization in the west.cfg file relies on first defining
rectilinear bin boundaries as a list and then defining states as
points, where the bin into which a point falls into becomes that

state. The resulting assign.h5 file is then used in step 2
(extraction step) to identify successful pathways connecting
the source and target states. For a cMD simulation, trajectories
can be assigned to source and target states with a Python
function specified by the --assign-function option of
lpath.discretize. The resulting .npy file is then used
in the pathway extraction step.

Several options are available for discretizing the config-
uration space between the source and target states. Clustering
methods, such as k-means clustering, can be used to assign
states for both WE and cMD simulation data sets by supplying
a user-defined Python function to the --assign-
function option of lpath.discretize and output
cluster labels as an .npy file. For WE simulation data sets, the
unique number identifiers of trajectory segments (WE segment
IDs) at each iteration can be used as proxy “states”. The use of
trajectory segment IDs for discretization is beneficial in cases
where configuration space is difficult to discretize based on one
or two features. However, pathways among replicate WE
simulations cannot be directly compared using this method as
segment IDs are not directly comparable between different
simulations. If not using clusters or segment IDs as states, the
configuration space of WE data sets can be discretized using
WESTPA’s w_assign tool.
Step 2: Extract Successful Pathways. This step extracts

all successful pathways that connect the source and target
states and saves these pathways as a convenient text-string
sequence of states visited along with other relevant simulation
data (e.g., trajectory weights, progress coordinates, other
properties for defining states). Options for fine-tuning this
extraction step are described below.

First, we recommend using the finest time resolution (i.e.,
“frame” frequency at which conformations are captured)
relevant to the completed simulation, which will be highly
system-dependent. The choice of time resolution can have a
major impact on the classification of pathways, i.e. pathways
with a relatively coarse time resolution may miss key state-to-
state transitions. The time resolution is specified using the

Figure 1. LPATH workflow for clustering pathways. The workflow consists of three steps executed on the command line. In the “discretize” step,
source and target states are defined, and the configuration space between the source and target states is subdivided into discrete states. In the
“extract” step, each successful pathway is represented as a text string consisting of the sequence of states visited at a specified frame frequency. The
final “match” step calculates a similarity score between each pair of pathway text strings and then uses these similarity scores to perform hierarchical
clustering of the pathways. The end result is a histogram of the distinct pathway classes.
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--stride option and operates differently for WE vs cMD
simulations. By default, analysis of WE simulations is done on
frames every WE resampling time interval τ. However, users
may set the --stride option to consider frames at a sub-τ
time resolution, e.g. --stride=10 for a WE simulation
with τ = 100 ps and frames saved every ps specifies frames
every 10 ps. The resulting pathways would be 10 times longer
than those using frames every τ. If a pathway exits the source
state or enters the target state in the middle of an τ interval,
only the sub-τ frames after the exit or before the entry are
considered. For cMD simulations, a stride of 10 provides 10x
fewer points than the default resolution, considering
conformations every 10 frames instead. The --stride
option is a shared parameter that can be used in both the
discretize and extract steps.

Second, we recommend removing shorter pathways (e.g.,
fewer than 10 sequential frames) that can exhibit inflated
similarity scores by specifying a pathway length threshold using
the --exclude-length option. The LPATH tool will
automatically alert users if pathways with fewer than 10 frames
exist in the pathway ensemble. Users may also consider higher
thresholds when the pathway ensemble consists of more than
25% pathways below the default 10 frame threshold. However,
users should ensure that each pathway class identified contains
at least 10 pathways for a statistically robust analysis.
Step 3: Match Pathways. This step calculates pairwise

pathway similarity scores and identifies distinct pathway classes
using hierarchical agglomerative (bottom-up) clustering. Any
user-defined pathway similarity function written in Python can
be used for this step with the --match-metric option.
The output of the pathway similarity function should return a
number that indicates the relative similarity of each pair of
pathway strings. All pairwise similarities are then compiled into
a distance matrix and clustered with the hierarchical
agglomerative (“bottom-up”) clustering approach using the
Ward linkage method.22

When matching, repeating patterns of states can often
prevent a clear separation of pathways into distinct classes. To
address this issue, we provide an option to condense these
repeating patterns into user-specified lengths. For example, a
--condense 2 option will sequentially eliminate consec-
utive repeating characters (e.g., 11221112221122 becomes
121212) and consecutively repeated pairs (e.g., 121212
becomes 12) to provide a fundamental sequence of states
that disregards the length of time spent in each state. The
ability to condense pathway strings greatly reduces the effects
of pathway length on matching by focusing the pattern
matching on the fundamental sequence of states visited,
thereby improving the ability of the clustering algorithm to
generate distinct pathway classes.

■ A MODIFIED GESTALT PATTERN MATCHING
ALGORITHM

The LPATH similarity score for a pair of pathways A and B is
based on the Gestalt pattern matching algorithm, which is
commonly used for plagiarism detection in computational
linguistics18

=
×

+
simliarity

length longest common subsequence
length length

2 ( )
( )AB

AB

A B
(1)

where the length of the longest common subsequence (see
Figure 2A) is multiplied by two (to account for the fact that a

pair is being evaluated) and divided by the combined length of
the two pathway text strings being compared. The division by
the combined lengths effectively normalizes the numerator
(double the longest common subsequence) and provides a
similarity score out of a maximum value of one.

While the Gestalt pattern matching algorithm works well for
the comparison of words in a text document that tend to be
roughly the same length, it works less well for the comparison
of molecular pathways that can differ dramatically in length.
For the latter, the algorithm tends to generate similarity scores
that are dominated by the pathway length and not the longest
common subsequence. To avoid this potential artifact, we
added a minimally perturbing correction term to the
denominator of eq 1:

= ×

+ | |( )
simliarity

length longest common subsequence

length length

2 ( )

( )
AB

AB

A B
length length

2
A B

(2)

This correction term subtracts half the length difference
between the two pathways being compared from the combined
length of both pathways, acting as a “penalty” toward the
similarity score if the two pathways being compared are of
drastically different lengths (Figure 2B). If the two pathways
have similar lengths, then the correction term becomes zero.

Figure 2. Illustration of the Gestalt pattern matching algorithm with a
correction term for comparison of molecular pathways. A) An
example comparing two text strings with our corrected Gestalt pattern
matching algorithm. These strings have a longest common
subsequence of nine characters and lengths of ten and 11,
respectively. The assessed similarity between these strings is 0.88,
an expected result given how similar these two strings appear. B) An
example of how the original Gestalt pattern matching algorithm can
be inaccurate when comparing string pairs of dramatically varying
lengths. Each colored block represents one of two characters, purple
or gray. The main string in this example (three purple) appears more
similar to a string of the same length (gray-purple-gray) than it does
to a string 17 characters long, even though the longest common
subsequence is higher with the 17-character string (three versus one).
The corrected Gestalt pattern matching algorithm produces similarity
scores that are less influenced by length discrepancies and more
influenced by the longest common subsequence.
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■ LPATH APPLICATION TO AN ALANINE DIPEPTIDE
CONFORMATIONAL TRANSITION
Simulation Details. Our benchmark application of

LPATH involved the conformational transition of the alanine
dipeptide from the C7eq to C7ax states (Figure 3). Our
simulations employed the AMBER ff14SBonlysc force field23

for alanine dipeptide and generalized Born implicit solvent.24,25

A 4 fs time step was enabled in all simulations by using a
hydrogen mass repartitioning scheme. WE simulations were
run with a τ = 100 ps and a two-dimensional progress
coordinate consisting of ϕ and ψ backbone torsional angles.
Fixed bins for WE were placed only along the ψ dimension of
the progress coordinate at 20° intervals between 0° and 360°.
Trajectory coordinates were saved every 4 ps. The five,
independent WE simulations generated 80 successful pathways
in 14.6 μs of aggregate simulation time. Each simulation was
completed in 21 h using 8 CPU cores of a 3.5 GHz Intel Xeon
CPU in parallel. An equivalent 14.6 μs of cMD simulation
yielded only 30 successful pathways, which was not sufficient
for a robust analysis of pathways. Nevertheless, we have
included an example of how to analyze cMD simulations using
LPATH in the GitHub repository.

We strongly recommend generating multiple independent
simulations whenever possible to assess the variation between
runs, as we did in this work. To combine multiple WE

simulations prior to application of the LPATH workflow, use
the WESTPA’s w_multi_west tool with the
--ibstates flag.
Discretizing the Configuration Space via Clustering.

To discretize the configuration space, we first assigned the
source and target states to the C7eq and C7ax states,
respectively, of the alanine dipeptide and then clustered
conformations between the source and target states. To
circumvent the memory costs of clustering a large number of
conformations, we implemented and subsequently applied a
two-stage approach that first trains a machine learning model
on a subset of conformations that have been cluster-labeled
with a clustering method and then uses the resulting model to
predict cluster labels for the remainder of the data set. The use
of a pretrained model in this step is optional and only used due
to the large number of conformations that needed to be
assigned states. In the first stage, we applied hierarchical
agglomerative (bottom up) clustering with an “average” linkage
criteria on a subset (data from the final 50 iterations of each
WE simulation) of the conformations, tuning the distance
threshold (i.e., to 75) to yield six clusters that correspond to
known conformational states of alanine dipeptide in ϕ/ψ
torsional angle space (Figure 4A). We then used the resulting
cluster-labeled conformations to train a k-nearest neighbors
classifier model (N = 5) on the cluster-labeled subset of

Figure 3. C7eq to C7ax conformational transition of an alanine dipeptide as a benchmark application. Alanine dipeptide, capped with acetyl and N-
methyl groups, is shown alongside a probability distribution of conformations as a function of the ϕ and ψ backbone torsional angles. In this work,
we focus on the transition between C7eq and C7ax, which involves surmounting a relatively large energy barrier (∼5 kcal/mol) along ϕ.

Figure 4. Validation of our two-stage clustering approach for a WE simulation of the alanine dipeptide. A) Clusters resulting from hierarchical
agglomerative clustering of a subset (every 4 ps from the final 50 iterations) of the WE simulation data. Each data point (conformation) is colored
by cluster. Centroids of these initial clusters are indicated by black dots. B) Clusters assigned to the full simulation data set based on a machine
learning (k-nearest neighbors) classifier model that was trained on the cluster-labeled subset of data in A). The corresponding centroids are
indicated as black dots and are in close agreement with those from the subset in A).
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conformations. In the second stage, we used the classifier
model to predict cluster labels for the remainder of the data
set. As a validation of this two-stage approach, the centroids of
the final clusters matched the centroids from the training set
(Figure 4B). To avoid any artifacts due to the periodicity of the
torsional space, we adjusted the range of ϕ angles from −180°
to 180° to be between −210° and 150° prior to clustering the
conformations.
Pathway Clustering Identifies Two Distinct Pathway

Classes. After assigning states, we calculated the similarity
score of each pair of pathways using our modified Gestalt
pattern matching algorithm (eq 2). Next, we clustered all
successful pathways with hierarchical agglomerative clustering

using the “Ward” linkage criteria and the distance (d = 1 −
similarityAB) between each pair of sequences A and B. We then
identified distinct pathway classes based on a dendrogram (tree
diagram) of the clustering results. Figure 5A displays the
dendrogram constructed using 80 successful pathways from the
set of five independent WE simulations. Each vertical “leaf” in
the dendrogram represents a pathway, which connects to other
pathways through horizontal “nodes”. Dendrogram branches
with nodes that are similar to each other are closer together in
the vertical direction. We identified the most distinct grouping
of pathways into classes by positioning a horizontal line at a
point that divides the dendrogram vertically between nodes
with a maximum distance separation. For our WE simulation, a

Figure 5. Analysis of pathways for the C7eq to C7ax transition of alanine dipeptide generated using five WE simulations with coordinates saved
every 4 ps. A) Dendrograms of successful WE-generated pathways (N = 80) reveal two distinct pathway classes 1 and 2 based on the cluster
distance indicated by the horizontal dashed line. B) Directed network plots reveal that pathway class 1 involves an upper route from state 0 to state
1 and pathway class 2 involves a lower route from state 3 to state 4. C) Histogram of the two pathway classes indicating that the upper route (blue)
is more probable than the lower route (red). D) Histograms of the event duration (barrier crossing) times for each pathway class indicate that the
pathway classes are not determined solely based on pathway length and that the upper, more probable route is more direct. This simulation data set
consisted of 5 WE simulations totaling 14.64 μs of aggregate simulation time.
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horizontal line at y = 1.25 divides the dendrogram at the
maximum vertical distance between nodes, identifying two
pathway classes. We advise positioning this line at a few
different positions and noting its impact on the number and
features of the resulting pathway classes. Often, drawing the
line too low in the dendrogram will generate pathway classes
with redundant features (such as tracing the same pathway
through phase space). If the number of pathway classes is
unclear from the dendrogram, we recommend revisiting steps 1
and 2 of the LPATH workflow to ensure that (i) a minimum of
three states was used for discretization of configuration space,
(ii) at least 50 total pathways were extracted, and (iii) each
pathway contains at least 10 frames.

To determine how the two pathway classes differ in the
mechanism of the C7eq to C7ax transition, we generated
directional network plots of the fundamental “condensed”
pathway routes through ϕ/ψ torsional space (Figure 5B). Each
node in the network plot corresponds to a defined state visited
by the trajectories and is scaled according to the trajectory
weights from the WE simulations. The C7eq to C7ax transition
of alanine dipeptide appears to cross the main energy barrier in
the ϕ dimension along two main “routes,” one from state 0 to
state 1 (the lower route) and one from state 3 to state 4 (the
upper route). A histogram of the two pathway classes (Figure
5C) reveals that the upper route is more probable (87.5%)
than the lower route (12.5%). Based on the distribution of
event duration (barrier crossing) times for each pathway class
(Figure 5D), it is clear that both short and long pathways are
grouped into the same classes, indicating that our modified
Gestalt pattern matching worked as intended.

■ CONCLUSIONS
The LPATH tool reveals distinct classes in the pathway
ensemble by discretizing the configuration space into key
states, extracting successful pathways, and matching those
pathways. The heart of the LPATH tool is the use of a custom
score based on the Gestalt pattern matching algorithm from
computational linguistics, which clusters solely based on the
matching of text strings representing the pathways. The
generality of the pattern matching algorithm, which supports
matching pathways of variable lengths, allows for a semi-
automated workflow. We demonstrate the effectiveness of the
LPATH tool in analyzing the pathway ensembles of the alanine
dipeptide from five independent WE simulations. The two
distinct pathway classes identified by our tool correspond to
“upper” and “lower” routes from the C7eq to C7ax conforma-
tional states. The interoperability of the LPATH tool enables
straightforward implementation of alternate methods such as
geometric matching used in the PSA method and Voronoi
clustering used in the PHAT method.
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LPATH’s functionality and is available on GitHub: https://
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needed to reproduce these results, along with the associated
plotting scripts, can be found in the LPATH GitHub
repository under the examples folder. Full documentation for

using LPATH, including information needed to reproduce the
results of this study, can be found here: https://lpath.
readthedocs.io.
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